Statistics and Probability – UNIT 4 Using Probability to Make Decisions

Introduction: Instructional time will be spent on applying probability rules to create a probability distribution model with a main focus on discrete data sets. Students will use these probability distribution models to make appropriate decisions.

CLUSTER	COMMON CORE STATE STANDARDS	
Calculate expected values and use	HSS.MD.A.1	
them to solve problems.	(+) Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space;	
	graph the corresponding probability distribution using the same graphical displays as for data distributions.	
	HSS.MD.A.2	
	(+) Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.	
	HSS.MD.A.3	
	(+) Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities	
	can be calculated; find the expected value.	
	For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all	
	five questions of a multiple-choice test where each question has four choices, and find the expected grade under various	
	grading schemes.	
	HSS.MD.A.4	
	(+) Develop a probability distribution for a random variable defined for a sample space in which probabilities are	
	assigned empirically; find the expected value. For example, find a current data distribution on the number of TV sets per	
	household in the United States, and calculate the expected number of sets per household. How many TV sets would you	
	expect to find in 100 randomly selected households?	
Use probability to evaluate outcomes	HSS.MD.B.5	
of decisions.	(+) Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values.	
	HSS.MD.B.5.A	
	Find the expected payoff for a game of chance. For example, find the expected winnings from a state lottery ticket or a	

CLUSTER	COMMON CORE STATE STANDARDS		
	game at a fast-food restaurant.		
	HSS.MD.B.5.B		
	Evaluate and compare strategies on the basis of expected values. For example, compare a high-deductible versus a low-		
	deductible automobile insurance policy using various, but reasonable, chances of having a minor or a major accident.		
	HSS.MD.B.6		
	(+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).		
	HSS.MD.B.7		
	(+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey		
	goalie at the end of a game).		
MATHEMATICAL PRACTICES	LEARNING PROGRESSIONS		
1. Make sense of problems and	Statistics and Probability Progression		
persevere in solving them.	http://commoncoretools.me/wp-content/uploads/2012/06/ccss progression sp hs 2012 04 21 bis.pdf		
2. Reason abstractly and quantitatively.			
3. Construct viable arguments and			
critique the reasoning of others.			
4. Model with mathematics.			
5. Use appropriate tools strategically.			
6. Attend to precision.			
7. Look for and make use of structure.			
8. Look for and express regularity in repeated reasoning.			

	ENDURING UNDERSTANDINGS		ESSENTIAL QUESTIONS	KEY VOCABULARY
٠	Students learn about discrete random variables	•	How can you identify and distinguish between	Expected value
	and their probabilities distributions.		discrete and continuous random variables?	Independent trials
•	Students calculate and interpret the mean	•	How do you interpret the probability of a	Mean of a probability distribution
	(expected value) of a discrete random variable.		continuous random variable as the area under a	Probability distribution
•	Students understand that mean is the expected		density curve?	Random continuous variable
	value and calculate expected value.	•	How do you compute the mean (expected value)	Random discrete variable
	•		of a discrete random variable from its	
			probability distribution?	

	RESOURCES		INSTRUCTIONAL STRATEGIES	ASSESSMENT
•	AP Stats Monkey: This site includes a	•	Remind students about the general definition of	Formative Assessment
	wonderful collection of resources written by		a distribution: a list of the possible values a	SBAC - <u>http://www.smarterbalanced.org/</u>
	teachers and collected by Jason Molesky.		variable can take and how often it takes those	
	http://apstatsmonkey.com/StatsMonkey/Statsmo		values.	LAUSD Periodic Assessment
	<u>nkey.html</u>	•	Have students interpret the expected value as a	District assessments can be accessed through:
٠	StatKey: Free resource for creating simulations		long-run average.	http://achieve.lausd.net/math
	http://lock5stat.com/statkey/	•	Illustrate the difference between discrete and	http://achieve.lausd.net/ccss
•	Create your own theoretical and experimental		continuous random variables.	
	probability spinner:		• For example, a person's foot length is	Use your Single Sign On to access the Interim
	https://illuminations.nctm.org/adjustablespinner/		continuous while a person's shoe size is	Assessments
			discrete.	
		•	Emphasize that the graphical display for a	
			discrete random variable is a histogram while	California will be administering the SMARTER
			the graphical display for a continuous random	Balance Assessment as the end of course for grades
			variable is a density curve. Relate this back to	3-8 and 11. The 11th grade assessment will include
			the graphical displays learned in Unit 1.	items from all High School Common Core strands,
		•	Remind students that they already learned how	including Statistics and Probability. For examples,
			to calculate probabilities under a Normal curve	visit the SMARTER Balance Assessment at:
			in Unit 1, which is a continuous distribution.	http://www.smarterbalanced.org/.

LANGUAGE GOALS for low achieving, high achieving, students with disabilities and English Language Learners

Students will exchange ideas to determine how to calculate probabilities of events involving random variables. ٠

Example: I think we should apply _____ principle in order to determine the correct probability.

Students will identify and interpret the expected value of a random variable. •

Example: The expected value, _____, of _____ (random variable) is the long-run average value of X, distributed over a very large number of trials.

Students defend their decision by quantifying the probability and explaining in context. ٠

Example: If I only guessed on a multiple-choice exam with ____ questions with ____ options, I would only have _____ probability of passing the exam.

PERFORMANCE TASK

In Roulette, 18 of the 38 spaces on the wheel are black. Suppose you decide to try your luck and bet \$1 on black on the next 10 spins of a roulette wheel (recall that if you win, you win \$1, and if you lose, you lose \$1). Let X = the number of times you hit black in 10 spins.

For each question, provide a mathematical path to your answer.

- a) Find P(vou win \$2).
- b) Find *P*(you lose money).
- c) Find *P*(you win money).

DIFFERENTIATION 🚇					
UDL/ FRONT LOADING	ACCELERATION	INTERVENTION			
 Statistics and Probability: Use a simulation activity to demonstrate the difference between an experimental and a theoretical probability distribution. The website below allows you to create your own spinner. <u>https://illuminations.nctm.org/adjustablespinner/</u> Review how to calculate a weighted average and make the connection to the expected value of a discrete random variable. 	 Acceleration for high achieving students: Teach the binomial and geometric distributions and how to calculate probabilities using these distributions. Teach students how to determine whether the conditions for the Normal approximation to a binomial distribution are met. Show students how to calculate the mean (expected value) and standard deviation for sums and differences of 	 Re-emphasize the definition of probability and the basic probability rules. Emphasize the idea of a sample space and how listing all possible outcomes may be helpful in creating a probability distribution. e.g. Show students how to create a sample space when rolling two different number cubes. 			
	independent random variables.				

June 28, 2016 Draft